Kali ini kita akan menyelesaikan persamaan eksponen. Persamaan eksponen memiliki berbagai variasi soal dan cara untuk mengerjakan.
Daftar isi
Bab ini membahas tiga macam persamaan eksponen, yaitu: (1) persamaan eksponen dengan basis sama; (2) persamaan eksponen dengan basis berbeda; dan (3) persamaan kuadrat eksponen.
Persamaan Eksponen dengan Basis Sama
Jika \(a\) adalah bilangan bulat, \(a \neq 0\) maka berlaku hubungan \(a^{f(x)}=a^p\) sehingga \(f(x)=p\).
Contoh:
\[a.\quad 2^x = 32\]
\[\quad \quad 2^x = 2^5\]
\[\quad \quad x = 5\]
\[b.\quad 2^{x+1}.3^{x-1} = 24\] \[\quad \quad 2^x.2.3^x.\frac{1}{3}=24\] \[\quad \quad (2.3)^x = \frac{24\times 3}{2}\] \[\quad \quad 6^x = 36\] \[\quad \quad 6^x = 6^2 \] \[\quad \quad x = 2\]
\[c.\quad \left(\frac{1}{3}\right)^3 \sqrt{3^{2x+1}} = 27\] \[\quad \quad 3^{-3}.3^{\frac{1}{2}(2x+1)} = 3^3\] \[\quad \quad 3^{\frac{1}{2}(2x+1)} = 3^6\] \[\quad \quad \frac{1}{2}(2x+1)=6 \] \[\quad \quad 2x+1=12 \] \[\quad \quad x=\frac{11}{2}\]
\[d.\quad \sqrt[4]{(0,2)^x} = 25^{x+1}\] \[\quad \quad \left(\frac{1}{5}\right)^{\frac{x}{4}} = 5^{2x+2}\] \[\quad \quad 5^{\frac{-x}{4}} = 5^{2x+2}\] \[\quad \quad \frac{-x}{4} = 2x+2\] \[\quad \quad -x = 8x+8 \] \[\quad \quad x=\frac{-8}{9}\]
Persamaan Eksponen dengan Basis Berbeda
Untuk menyelesaikan persamaan eksponen ini dibutuhkan \(\log\) atau \(ln\)
Contoh:
\[a.\quad 2^{x+3} = 5^{2x}\]
\[\quad \quad \ln2^{x+3} = \ln5^{2x}\]
\[\quad \quad (x+3)\ln2 = (2x)\ln5\]
\[\quad \quad x\ln2 + 3\ln2 = 2x\ln5\]
\[\quad \quad 3\ln2 = 2x\ln5 - x\ln2\]
\[\quad \quad 3\ln2 = x(2\ln5 - \ln2)\]
\[\quad \quad x = \frac{3\ln2}{2\ln5-\ln2}\]
\[\quad \quad x = \frac{\ln8}{\ln25-\ln2}\]
\[b.\quad 2^{x+3} = 10^{x+3}\] \[\quad \quad \log2^{x+3} = \log10^{x+3}\] \[\quad \quad (x+3)\log2 = (x+3)\log10\] \[\quad \quad x\log2 + 3\log2 = x + 3\] \[\quad \quad 3\log2 - 3 = x - x\log2\] \[\quad \quad 3(\log2-1) = x(1-\log2)\] \[\quad \quad x = \frac{3(\log2 - 1)}{1-log2}\] \[\quad \quad x = \frac{3(\log2-1)}{-(\log2-1)} = -3\]
Persamaan Kuadrat Eksponen
Ini adalah bentuk persamaan kuadrat, hanya saja variabelnya adalah eksponen, untuk menyelesaikan persamaan eksponen ini dibutuhkan pemisalan variabel, seperti \(y = 3^x\) atau \(y = 2^x\), dsb..
Contoh:
\[a.\quad 2^{2x-1} - 9.2^{x-2} + 1 = 0\]
\[\quad \quad \frac{1}{2}.2^{2x} - 9.\frac{1}{4}.2^x + 1 = 0\]
\[\quad \quad \frac{1}{2}.\left(2^x\right)^2 - \frac{9}{4}.(2^x) + 1 = 0\quad y = 2^x\]
\[\quad \quad \frac{1}{2}y^2 - \frac{9}{4}y + 1 = 0\]
\[\quad \quad \quad (y - \frac{1}{2})(\frac{1}{2}y-2)\]
\[\quad \quad \quad y = \frac{1}{2} \lor y = 4\]
\[\quad \quad \quad y = \frac{1}{2} \quad \Rightarrow \quad 2^x=\frac{1}{2} \quad \quad x = -1\]
\[\quad \quad \quad y = 4 \quad \Rightarrow \quad 2^x=4 \quad \quad x = 2\]
\[b.\quad 3^{2x+1} + 9 = 3^{x+3} + 3^x\] \[\quad \quad 3.\left(3^x\right)^2 + 9 = 27.(3^x) + 3^x\] \[\quad \quad 3.\left(3^x\right)^2 + 9 = 28.(3^x)\quad y=3^x\] \[\quad \quad 3y^2 - 28y + 9 = 0\] \[\quad \quad \quad (y - 9)(3y - 1)\] \[\quad \quad \quad y = 9 \lor y=\frac{1}{3}\] \[\quad \quad \quad y = \frac{1}{3} \quad \Rightarrow \quad 3^x = \frac{1}{3} \quad \quad x=-1\] \[\quad \quad \quad y = 9 \quad \Rightarrow \quad 3^x = 9 \quad \quad x=2\]
\[c.\quad 9^{x+1} + 81 = 246.3^x\] \[\quad \quad 9.\left(3^x\right)^2 + 81 = 246.(3^x) \quad y=3^x\] \[\quad \quad 9y^2 - 246y + 81 = 0 \quad (\div 3)\] \[\quad \quad 3y^2 - 82y + 27 =0\] \[\quad \quad \quad (y - 27)(3y - 1)\] \[\quad \quad \quad y = 27 \lor y = \frac{1}{3}\] \[\quad \quad \quad y = 27 \quad \Rightarrow \quad 3^x = 27 \quad \quad x = 3\] \[\quad \quad \quad y = \frac{1}{3} \quad \Rightarrow \quad 3^x = \frac{1}{3} \quad \quad x=-1\]
\[d. \quad 5.2^x = 2.4^x + 2\] \[\quad \quad 5.2^x = 2.\left(2^x\right)^2 + 2 \quad y = 2^x\] \[\quad \quad 5y = 2y^2 + 2\] \[\quad \quad 2y^2 - 5y + 2 = 0\] \[\quad \quad \quad (y - 2)(2y - 1)\] \[\quad \quad \quad y = 2 \lor y = \frac{1}{2}\] \[\quad \quad \quad y = 2 \quad \Rightarrow \quad 2^x = 2 \quad \quad x = 1\] \[\quad \quad \quad y = \frac{1}{2} \quad \Rightarrow \quad 2^x = \frac{1}{2} \quad \quad x = -1\]
\[e. \quad 64^x - 8^{x+1} + 16 = 0\] \[\quad \quad \left(8^x\right)^2 - 8.(8^x) + 16 = 0 \quad y = 8^x\] \[\quad \quad y^2 - 89 + 16 = 0\] \[\quad \quad \quad (y - 4)(y - 4)\] \[\quad \quad \quad y = 4\] \[\quad \quad \quad y = 4 \quad \Rightarrow \quad 8^x = 4 \] \[\quad \quad 2^{3x} = 2^2 \quad \quad x = \frac{2}{3}\]
\[f. \quad 3^{2x+1} + 3^{x+2} = 3\frac{1}{3}\] \[\quad \quad 3.\left(3^x\right)^2 + 9.(3^x) = \frac{10}{3} \quad y = 3^x\] \[\quad \quad 3y^2 + 9y - \frac{10}{3} = 0 \quad (\div 3)\] \[\quad \quad y^2 + 3y - \frac{10}{9} = 0\] \[\quad \quad \quad (y + \frac{10}{3})(y - \frac{1}{3})\] \[\quad \quad \quad y = \frac{-10}{3} \lor y = \frac{1}{3}\] \[\quad \quad \quad y = \frac{-10}{3} \quad \Rightarrow \quad 3^x = \frac{-10}{3} \quad \Rightarrow \quad N/A\] \[\quad \quad \quad y = \frac{1}{3} \quad \Rightarrow \quad 3^x = \frac{1}{3} \quad \quad x = -1\]
Kutip materi pelajaran ini:
Kontributor Tentorku, 2015, https://www.tentorku.com/menyelesaikan-persamaan-eksponen/ (diakses pada 12 Aug 2024).
Materi pelajaran ini bukan yang Anda butuhkan?
Anda bisa mengirimkan saran pada Tentorku di akun fb/twitter/google kami di @tentorku.
Topik dengan voting komentar terbanyak akan mendapatkan prioritas dibuatkan pembahasan.